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I. INTRODUCTION 

The families of extremely massive hadrons discovered during the 

past three years are widely believed to indicate the existence of new 

flavors of heavy quarks. The psions' now are firmly established as 

bound states of a charmed quark and antiquark, and it is popular to 

assume that T(9.41, T'(10.01, ...2 are bound states of one or more 

species of new quarks. The general agreement3 between the spectroscopy 

of psions and the predictions of simple nonrelativistic potential models 

encourages the belief that heavy quarkonium systems may meaningfully be 

discussed in the context of the Schradinger equation in a central 

potential, 

( 
V2 

- 21.1 + V(r) Y(?t) = iat 3 ay ( t) . (1.1) 

Such an approximation should be even more reliable for the quarks which 

make up T than for the Jo. 4 This opens the possibility of studying the 

interaction of quarks in a situation which is greatly simplified in 

comparison with ordinary light hadrons. 

Within the framework of nonrelativistic potential models, the question 

of how quarks interact becomes sharply defined. It is the inverse 

scattering problem of the Schradinger equation: how and to what extent 

does the spectrum of a quarkonium system measure the interquark potential? 

The mathematical problem this poses has been studied for many years in 

other contexts, and a rich formalism has grown up around it. 5-11 In 

this article and the sequel, we shall explore some of these techniques 

and study the possibility of deriving the interquark potential directly 

from spectroscopic data. This first paper deals primarily with formalism 

and methodology. Specific applications to heavy quark systems are 
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presented in the following paper. 

The literature on the inverse scattering problem is voluminous and 

we will not attempt to review it thoroughly. The procedure derived and 

discussed in Section II is based upon the techniques of Gel'fand and 

Levitan and of Kay and Moses. 12 In order to bring out the various 

aspects of the problem in proper sequence, we shall restrict our attention 

for the present to the one-dimensional problem 

(1.2) 
2 

-a +V(x) 
ax2 

4(x,k)= k20(x,W - 

The extension to the radial equation in three spatial dimensions is 

mentioned in Section V and discussed at length in the following paper. 

Broadly speaking, the Gel'fand-Levitan method may be viewed as a 

dispersion theory for the Schrgdinger wave function. From solutions to 

(1.2) with k2 replaced by a complex eigenvalue C2, one can construct an 

analytic function @(x,<) which approaches unity as I</ -+ ~0 . Thus, 

@,(x,5) is completely determined by its singularity structure which 

consists of a cut along the real c-axis and some number N of bound- 

state poles on the positive imaginary axis. The spectral weight of the 

cut is essentially a scattering-state wavefunction multiplied by.the 

reflection coefficient, both evaluated at real k. Similarly, the pole 

residues are essentially constants times bound-state wavefunctions. Upon 

Fourier transformation, the dispersion relation for @ becomes the 

Gel'fand-Levitan integral equation which determines the wavefunctions. 

The kernel of this equation is given entirely in terms of the reflection 

coefficient and 2N bound-state parameters. 

If the reflection coefficient vanishes for all real values of k, 
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the Gel'fand-Levitan equation can be solved exactly by algebraic 

techniques. The only singularities of Q(x,<) are the bound-state poles, 

and the integral equation reduces to a system of N linear algebraic 

equations for the bound-state wavefunctions. Cramer's rule gives an 

explicit formula for the bound-state wavefunctions in terms of 2N 

parameters. A 2N-parameter expression for the potential V(x) is also 

obtained. Half of the parameters are determined by the bound-state 

energies. The remaining N parameters may be fixed either by some explicit 

piece of information about the bound-state wavefunctions (e.g., their values 

at x=0) or by imposing the requirement V(x)=V(-x)-i' The latter procedure is 

of more interest to us since it forms the most convenient bridge to the radial 

Schrddinger equation, for which we must concern ourselves with boundary con- 

ditions at x=0. The general choice of parameters which yields a symmetric 

potential is derived in Section III. 

Thus, when the physical situation is such that the continuum part 

of the spectral function can be ignored, the inverse problem is completely 

and explicitly solved. The result is a symmetric, reflectionless potential 

which binds N states at arbitrarily adjustable energies. For a strictly 

confining potential there is perforce no continuum, but it would be 

impractical to reconstruct a potential from an infinite number of bound 

states. We therefore must ask how well the inverse scattering formulas 

work with only partial information, namely the energies of a few low-lying 

bound states. The behavior of the sequence of approximations V,(x) to 

V(x) obtained as more bound states are included poses a well-defined 

mathematical question of convergence, which we shall not address here. 

Instead we study the successive approximations obtained for three simple 
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examples: the linear, harmnic oscillator, and infinite square-well 

potentials. The results, described in Section IV, clearly suggest that 

an arbitrarily accurate local approximation to any reasonably smooth 

confining potential is provided by a reflectionless potential as more 

bound states are included. .For any finite number of bound states, the 

potential constructed in this fashion is evidently not unique. It is 

possible to imagine a great variety of other parametrizations which may 

be adjusted to fit the observed bound-state spectrwa. The method we 

propose is attractive because the parameters which arise are directly 

related to the bound-state energies, because the reconstructed potential 

is given algebracally in terms of those parameters, and because successive 

approximations to the potential are easily generated. Moreover, in the 

region of x for which the relevant bound-state wavefunctions are not 

negligible, the approximations are quite good even for N = 3 or 4. An 

interquark potential constructed from information about @(3095) and 

#'(3684) corresponds to the case N=4 in one dimension. Consequently, we 

expect to obtain from the accessible data a fairly accurate impression of 

the interquark interaction. 

In the next Section, we derive the Gel'fand-Levitan equations in the 

form most convenient for the quarkonium problem. The connection between 

the inverse scattering problem of the SchrSdinger equation and the nonlinear 

Korteweg-de Vries equation 14 is explained in Section III. We compare in 

Section Iii approximate potentials and wavefunctions with exact results 

for confining potentials. Discussion of these results and the application 

to quarkonium systems occupies Section V. 

II. THE GEL'FAND-LEVITAN EQUATIONS 

Consider the eigenvalue problem of the Schrsdinger equation for a 

potential V(x) in one space dimension, 

$(x,k)= k20(x,k) - (2.1) 

In order to formulate the direct and inverse scattering theory for 

(2.11, we shall assume that V(x) approaches at infinity a constant which 

we take to be zero, 
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V(x)---+ 0 . (2.2) 
I+-@ 

From an operational standpoint, the restriction (2.2) will be removed in 

Sec. IV where we show that confining potentials (V(+m) = M) can be locally 

reconstructed by the same analysis. The scattering data for the potential 

V(x) can be defined in terms of particular solutions to (2.1) which obey 

prescribed boundary conditions at infinity. Let @l and 9, be solutions to 

(2.1) with asymptotic behavior 

$l(x,k) 2, eikx asx-t+m ; (2.3) 

$2(x,k) Q e-ikx asx-t-m , (2.4) 

For real values of k, the function $l *(x,W = $l(x,-k) is also a solution 

to (2.1) which is linearly independent of @l(x,k). Hence 0, can be written 

as a linear combination of $l and @,* as 

$2(x,k) = a(k)+l*(x,k) + b(k)@l(x,k) . (2.5) 

The usual reflection and transmission coefficients are related to the 

coefficients in (2.5) by 

R(k) = b(k)/a(k), 

T(k) = l/a(k) . 

(2.6a) 

(2.6b) 

The Wronskian of any two solutions Yl(x,k) and Y2(x,k) of eq. (2-l) 

is independent of x, 

ax[ylQ2i = Y~Y~” - Pl”Y2 = 0 . (2.7) 
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Thus we may compute the Wronskian of 41(x,k) or +1* (x,k) with both sides 

of (2.5), evaluating the right-hand side in the asymptotic regime x + + ~0. 

By this device we arrive at expressions for the scattering data directly 

in terms of the wavefunctions: 

a W = & [$1<+21 , (2.8) 

(2.9) 

The functions $,(x,S) and $,(x,<) can be analytically continued into the 

upper-half c-plane. [We shall use k and 5 when referring to real and 

complex values, respectively.] Analyticity for Im <>O follows' from the 

Volterra integral equations which incorporate (2.1) and the boundary 

conditions (2.3) and (2.4): 

co 

9,(x,3) = ei3x + + 
I 

dy sin[3(~-x)lV(y)~,(y,s) , 
X 

$2 (x,3) = eBiTx + +- dy sin 13 (x-y) IV(y) $2 (y, 3) . 
-to 

(2.10a) 

(2.10b) 

Equation (2.8) also allows us to regard a(k) as the boundary value 

of the reality of the potential of an analytic function a(3). Because 

V(x), it follows from (2.1) that 

$l*(x’5) = (bl ( 

* 

x,-3*1 , (2.11) 

42 (x,3) = 42(x,-3*) , (2.12) 

and hence, using (2.8), 

a*(S) = a(-3*) . (2.13) 
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From this result it is easily shown that the zeroes of a(3) in the upper 

half-plane must lie along the imaginary axis at 3=3nfikn, n=1,2,...,N, with 

K real. n As shown by (2.6), these zeroes correspond to bound-state poles 

in the S-matrix. 

In essence, the Gel'fand-Levi-tan equation is a dispersion relation 

for an analytic function @(x,3) which is defined as 15 

a-1(3)02[x,3)ei3X,Im 3>0 , 

i 

(2.14a) 

@(x,3) = 

$l*(x,3*)ei3x,Im 3<0 . (2.14b) 

The choice of (2.14a) is suggested by the fact that a -1(k)$2(x,k) is a 

wavefunction which obeys scattering boundary conditions. It consists of 

an incoming wave (from the right) with coefficient unity and transmitted 

and reflected waves multipled by the S-matrix elements T(k) and R(k) 

respectively. In addition to the poles at 3 = ik,, @(x,3) will in general 

have a cut along the real axis with discontinuity 

@(x,k+ie) b(k) - @(x,k-ie) : p(x,k) = a(k) - eikx$l(x,k) - (2.15) 

Thus, the choice of (2.14b) in the lower half-plane provides a function 

with discontinuity proportional to the reflection coefficient. From the 

integral equations (2.10) it is easily shown that @(x,3) approaches unity 

as 131 +-Q). Thus the function @(x,3) can be reconstructed from its 

singularities as 

N 

@(x,3) =l+ y c 
e -ICnX $2(x,ikn) 1 

n=l 3-j-K a' (iK,) +m 
dk'P(x,k') 

n k'-3 * (2.16) 

The Gel'fand-Levitan equation is obtained from (2.16) by letting 
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S-+-k -is and Fourier transforming with respect to k. For our purposes, 

however, the dispersive form will be more useful. For the reasons 

outlined in Sec. I, we shall be particularly concerned with reflectionless 

potentials, for which R(k) vanishes for all real values of k. Thus we 

set p(x,k) = 0 in (2.16), whereupon 
N 

ca(x,<) = 1 + c 
e -KnX $,(x,iKn) 
___ 

nzl 3-iK n a'(iK,) a 
(2.17) 

From (2.5) it is seen that the bound-state wavefunctions $,(x,iKn) and 

$,(x,iKn) are proportional, 

$2(X,iKn) = b(iKn)$l(X,iKn) . (2.18) 

Thus, if (2.17) is evaluated in the lower half-plane at the N points 

3 = -iK m' m = 1,2 ,...,N, it yields a system of linear algebraic equations 

for the N bound-state wavefunctions, 
-K X N 2 n 

'mx 
c 

c e 
$l(x,iKm)e = 1 - _ n 

n=l Km+K 
0, (X, iKnj 

n 

where 

2 
C = 
n -ib(iKn)/a' (iK,) 

and m runs from 1 to N. 

A more symmetric form results from the definition 

q,(x) = cn~l(x’iKn) . 

I (2.19) 

(2.20) 

where Gn(x) is a normalized bound-state wavefunction, which satisfies 

dx[ICln(x)l 
2 

= 1 . 

(2.21) 

(2.22) 
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We rewrite (2.19) as 
N 

c 
n=l 

Amn$,(x) = h,(x) , 

where 

X,(x) f cne -KnX 

and the symmetric matrix A is defined by 

A h A =6 +e. 
mn mn mn 

Finally, we define a matrix A b-d which is obtained from A by replacing 

the n-th column by its derivative. Noting that 

ax($) = - h,A, , 
mn 

we write the bound-state wavefunctions explicitly as 

1 Det A(n) 
Q,(x) = - r nDetA s 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Equation (2.27) gives the bound-state wavefunctions in a reflection- 

less potential in terms of the 2N parameters ~~ and cn . The potential 

itself may be expressed in terms of the same parameters by considering 

the function 

X(x,3) = $l(x,3)e-i3x . (2.28) 

From the SchrEdinger equation (2-l), we have 

x" + 2i3X' = VX , (2.29) 

where prime denotes a derivative with respect to x. The function 

X(x,3) may be expanded in inverse powers of 3 as 
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03 

X(X,3) % 1 dx'V(x') + o(s) . 

X 3 

This is to be compared with the 131 + OJ, ImC<O limit of (2.171, 

N 
-K X 

c2j e n +,(x,iK,) + (,J(-$. , 
3 

or 

N 

x(x,3) ‘L 1 - ; 

2i 

2 -K X 

c e n n $l(x,iKn) + 0(+) . 
n= 3 

By comparing (2.30) and (2.32) we obtain the integrated potential in 

terms of the bound-state wavefunctions, 

!i 

co N 

dx'V(x') = -2 c 
n=l 

x,(x)+,(x) . 

X 

(2.30) 

(2.31) 

(2.32) 

A concise expression for the potential follows from the substitution of 

(2.27) into (2.33) and the observation that 

(2.33) 

N 

2 log (Det A) = c 
Det A(n) 

Det A I 
n=l 

tihiqh leads to 
m 

dx'V(x') = 2 2 log (Det A) . (2.35) 

(2.34) 

We therefore find a 2N-parameter formula for a reflectionless potential 

with N bound states, 16 

V(x) = -2 
d2 - log(Det A(x) ) I? 2c\ 

dx2 
. \.G.d”, 

Equations (2.36) and (2.25) form the basis of our subsequent analysis of 

specific potentials in terms of their spectral properties. 
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To illustrate the use of these formulas, let us consider the case of 

a reflectionless potential with a single bound state, N=l. Equation 

(2.25) becomes 

so the potential obtained from (2.36) is 

2 
A=l+&-e -2KX 

I 

d2 V(x) = -2 - 
dx2 

log (A) 

= -2K2sech2 [Ktx-x0) 1 

where 

xO 
=$log~$) . 

(2.37) 

(2.38) I 

(2.39) 

This result clarifies the significance of the parameters c and K in this 

simplest case. The binding energy ~~ fixes the depth of the potential, 

and the parameter c is related through (2.39) to the position of its 

center. we compute the bound-state wavefunction using (2.27) : 

Q(x) = 2 $$ =Esech[~(x-x0)] . 

The Schrsdinger equation 

t 
a2 i- 

ax2 
+ v(X))$(X) = -K2$(X) 

(2.40) 

(2.41) 

may be verified directly from (2.38) and (2.40). 
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III. REFLECTIONLESS POTENTIALS, SOLITONS 

AND THE KORTEWEG-DE VRIES EQUATION 

Some very useful intuition about the formalism constructed in the 

preceding Section can be gained by reviewing the famous connection 17,18 

between the inverse scattering problem of the Schradinger equation and 

the nonlinear Korteweg-de Vries (KdV) equation, 14 

Vt - 6vvx + vxxx = 0 . (3.1) 

Here v(x,t) is a function of x which depends on a time parameter t, 

and the subscripts denote partial derivatives. The KdV equation first 

arose in the study of shallow water waves and is relevant to a variety 

of systems which exhibit a balance between nonlinear and dispersive 

effects (the second and third terms in (3.11, respectively). A most 

conspicuous result of this balance is the existence of soliton 19 solutions 

to (3.1). In this section we shall review these well-known results and 

bring out the direct connection between reflectionless potentials of the 

Schradinger equation and N-soliton systems of the KdV equation. 

The reflectionless potential formula (2.36) is precisely a pure 

N-soliton configuration at a fixed time t 0' the potential V(x) being 

identified with the KdV "field" v(x,tO). The parameters c and IC are n n 

directly related to the positions and sizes of the individual solitons. 

The speed of a KdV soliton is not independent, but is determined by its 

size. In addition to providing us with a better perspective on the nature 

of reflectionless potentials, the KdV connection allows us rather easily 

to construct potentials with certain desired properties such as reflection 

symmetry by manipulation of solitons. 
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Our treatment follows the approach of Lax. 20 We define a differential 

operator 

a3 BE-4i- 
ax3 

+ 3i(v -$ + $ v) , (3.2) 

where v(x,t) is a solution to the KdV equation (3.1). At a given time t, 

the function v(x,t) may be interpreted as a scattering potential, with the 

corresponding Schrbdinger operator 

a2 L=- - + v(x,t) 
ax2 

. (3.3) 

The commutator of the operators defined by (3.2) and (3.3) is found, after 

some calculation, to be 

[B,L] = - i v -I- 6i vv aL 
xxx X 

=is , (3.4) 

the last equality following from the KdV equation (3.1) for v. Thus B 

may be interpreted as the generator of time evolution which propagates 

the potential v (and its Schrgdinger operator) according to the KdV 

equation. (The propagation of v generated by B should not be confused 

with the usual time evolution of the Schrcdinger equation generated by 

L, which propagates particles through a fixed potential.) 

Since the operator B is hermitian, the time evolution of the potential 

is effected by a unitary transformation 

U(t) = e -iBt . 

The Schradinger operator L(t) is expressed in terms of its form at t=O 

L(t) = u(t) L(0) u'(t) . 

(3.5) 

(3.6) 
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Moreover, the potential associated with L(t) supports N bound states 

with wavefunctions given by 

Jl,(x,t) = uW,(x) - (3.7) 

That is to say, if the wavefunctions q,(x) satisfy the SchrBdinger equation 

at t=O (with v(x,O) - V(x)), 

L(0)Jln(x) = -Kn2$n(x) , (3.8) 

then the functions defined by (3.7) satisfy the corresponding equation 

at time t, with the same eigenvalues, 

L(tWn(x,t) = -Kn2 $,(x,t) - (3.9) 

The unitarity of U enables us to verify the normalization condition (2.22) 

at t=-co, when all solitons are widely separated. Thus, as a reflectionless 

potential (an N-soliton system) evolves in time according to the KdV 

21 equation, its bound-state energy spectrum remains unchanged. 

Equation (3.7) can be rewritten in differential form as 

w 
i -$ (x,t) = BJln(x,t) (3.10) 

The idea of the inverse scattering approach to KdV solitons is to locate 

an individual soliton in the system by studying the asymptotic behavior 

of the corresponding bound-state wavefunction. It follows from eqs. (2.3) 

and (2.21) that 

Jl,(x,t) Q c,(t)e 

-KnX 

asx++m . (3.11) 

In the asymptotic regions x -f +m , the operator B assumes the simple 

form 
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a3 B + -4i - . 
ax3 

(x + km) (3.12) 

Thus (3.10) simplifies to an equation for the time dependence of the 

coefficients c,(t), 

ac 
y$ (t) = 4Kn3Cn(t) (3.13) 

with the solution 

c,(t) = c,(O)e 
4Kn3t 

. (3.14) 

To recapitulate, if a reflectionless potential is written in terms of the 

parameters cn and ~~ by eq. (2.36), and if the coefficients c,(t) are 

permitted to vary according to (3.14), the resulting time-dependent 

function is an N-soliton solution to the KdV equation. 

Since our ultimate aim is to consider the radial SchrBdinger equation 

for a system in three spatial dimensions, we will be particularly interested 

in the reconstruction of potentials which are symmetric about x=0, 

V(x) = V(-x) . (3.15) 

For the remainder of this section we will use the intuition derived from 

the foregoing discussion of solitons to find a general ansatz for the 

parameters cn which will guarantee symmetry of the potential. If there 

are no degeneracies in the spectrum of V(x) = v(x,O), which we hereafter 

assume, (3.15) can be satisfied only if each of the N solitons described 

by v(x,t) is located at the origin at t=O. Let us order the eigenvalues 

as 

‘1 ’ ‘2 ’ ‘** ’ KN - (3.16) 
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By transforming to a reference frame that is comoving with the n-th 

soliton 

6=x - 4Kn2t 

it can be shown22 that 

lim V(X,t) = -2Kn2 sech2 [Kn (x-4Kn2t-6,) 1 . 
t-r 

(3.17) 

(3.18) 

5 fixed 

This is precisely the expression for an isolated KdV soliton, all others 

having moved off to x = _+ 00 where they may be neglected. The n-th soliton 

is displaced from the origin of the comoving frame by an amount 

(3.19) 

Similarly it is found that, at large negative times, the N-soliton solution 

reduces in the frame (3.17) to 

lim V(X,t) = -2K 
2 sech2 [K~ (x-4Kn2t-En) 1 , 

t-2 -03 n 

5 fixed 

where 

(3.20) 

(3.21) 

Thus, the total shift of the soliton's trajectory is 

It is clear that a symmetric potential is obtained at t=O if we choose 

the parameters c,(O) to ensure that 
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(3.23) 

which requires 

Km+K n I I . 
K -K mn 

(3.24) 

The construction of a symmetric potential at t=O by the coalescence of 

several solitons is depicted graphically in Fig. 1. For large negative 

values of t, the N potentials (each of which supports a single bound state) 

are isolated and do not interact. At t=O the (nonlinear) superposition 

is the symmetric potential which supports N bound states with the pres- 

cribed energies. The individual solitons recover their initial shapes 

ast-++oo. The phase shift (3.22) is immediately apparent. 

A simple semiclassical argument serves to illustrate the importance 

of the symmetry condition (3.15). Let V(x) = V(-x) be monotonically 

increasing for x>O. The WKB quantization condition may be written as 

xO 
2 dxp= (n+$)n , (3.25) 

0 

where the classical turning point x o is defined by V(xo) = En. If 

(3.25) is differentiated with respect to n, and the variable of integration 

is changed to V, one finds 

E 
(3.26) 

We may invert (3.26) by multiplying by [V-E] 
-% and integrating with respect 

to E. The result is that 23 
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(3.27) 

Hence, knowledge of the bound-state spectrum suffices to determine a 

unique, symmetric, monotonic potential, in the semiclassical approximation. 

In this limit, moreover, information about levels below E=EO determine 

the potential for all values of x < x(Eo). We shall find very similar - 

behavior in the examples to be discussed in the following Section. 

IV. RECONSTRUCTION OF SIMPLE POTENTIALS 

Using formulas (2.36) and (3.24) we are able to explicitly construct 

a one-dimensional potential which is symmetric in x and has any desired 

bound-state spectrum. The result is unique, provided the potential is 

required to be reflectionless. That it is possible in principle to 

derive a potential directly from experimental data is evident. However, 

it is not immediately apparent how well the method can be expected to 

work if, for example, we are trying to reconstruct a confining potential 

knowing only the energies of a few low-lying bound states. The purpose 

of this section is to test the method on some simple potentials. The 

results encourage the application to quarkonium systems which is reported 

in a companion paper. 24 

A. Harmonic Oscillator 

We first discuss the harmonic oscillator potential 

V(x) = x2 , (4.1) 
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which supports bound states at energies 

E n+l = 2n + 1, n = 0,1,2,... 

The normalized bound-state wave functions are 

-% 
JI n+l(x) = L -x2/2 

vf-- inn! 
Hn (xl e I 

where H n is a Hermite polynomial 

H,(X) = (-l)nex 
mx2 

. 

(4.2) 

(4.3) 

(4.4) 

We now wish to use the bound-state spectrum (4.2) as input for the inverse 

formalism and investigate how well (4.1) and (4.3) are approximated by 

(2.36) and (2.27). 

At this point we encounter an ambiguity which is characteristic of 

confining potentials. Because the true potential does not approach a 

constant for large values of 1x1, as was assumed in (2.2), we must select 

a criterion by which the zero of energy is set. In other words, in order 

to construct a reflectionless potential which supports N bound states at 

the same energies as the first N harmonic oscillator levels (4.2), it is 

necessary to choose a parameter E 0 to define the binding energies 

K2 0-E =E n n' n = 1,2 ,---I N (4.5) 

where E n is the energy of the n-th level. We view this "E. 

ambiguity" in the following light. If E. is chosen equal to EN, then 

the N-soliton formula (2.36) is identical to the (N-l)-soliton formula 

which ignores the N-th bound state. This is obvious from the fact that 

the depth of the N-th soliton is proportional to ~~~ = E. - EN. It 
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seems reasonable to conclude that if N levels are to be included in the 

approximation, the value of E. should be restricted to the range 

E <E <E N 0 N+l - (4.6) 

In specific examples we find that the best approximation is obtained 

for E. ", %(EN + EN+l). The variation of V,(x), the N=4 approximation to 

the harmonic oscillator potential, as E. is varied over the range (4.6) 

is shown in Fig. 2. Hereafter we shall consistently make the choice 

EO = %(EN + E N+l) (4.7) 

for the N-bound-state approximation. 

In Figs. 3(a)-3(e) we compare the first five approximations to the 

potential with the exact result (4.1). The agreement is excellent in the 

region of x relevant to the specified energy levels. Successive 

approximations to the wavefunctions are plotted in Figs. 3(f)-3(j). It 

is seen that they are converging rapidly to the exact solutions shown in 

Fig. 3(k). 

B. Linear Potential 

As a second example we consider the linear potential 

V(x) = 1x1 , (4.8) 

for which the bound-state energies are given by the zeroes of Airy 

functions 25 

Ai'(-En) = 0, n = 1,3,5,... 

Ai (-En) = 0, n = 2,4,6,... (4.9) 
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The bound-state wave functions are the Airy functions 

Ai(x - En), x > 0 

$,(x) = 

i 

(-1P-l -- Ai (-x - En), x~< 0 , 

where the normalization integral Nn is given by 

m n = 1,3,5... 

dx[Ai(x-En)12 = 

0 n = 2,4,6... 

(4.10) 

(4.11) 

With the energy spectrum given by (4.9) we obtain the approximate potentials 

and wavefunctions displayed in Fig. 4. The results are again extremely 

impressive. 

C. Infinite Square Well 

Finally we examine the pathological case of an infinitely deep square 

well potential, 

I 

0, 

V(x) = 

mr 

which has bound states at 

E =n, n 

The bound-state wavefunctions are 

/XI < 7F/2 

1x1 > r/2 , 

n = 1,2,... 

I7 -+ cos nx, n odd 

1x1 < 7FP 
l),(x) = IT-4 sin nx, n even 

0, 1x1 > IT/2 . 

(4.12) 

(4.13) 

(4.14) 
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The approximate results obtained from (2.36) and (2.27) are shown in 

Fig. 5. The manner in which the wavefunctions are increasingly confined 

to the allowed region of space is noteworthy. 

V. DISCUSSION 

We have presented a method for systematically and explicitly 

calculating the shape of a symmetric, one-dimensional, confining potential 

from its bound-state energy levels. Approximations to the bound-state 

wavefunctions for all the levels included in the calculation are also 

obtained. As additional levels are included, the approximation to V(x) 

is improved locally and is extended to larger values of 1x1. The extension 

of the method to the s-wave radial equation in three dimensions is 

straightforward and will be described in the following paper. In this 

case two pieces of information are required for each bound state, namely 

the energy and the magnitude of the wavefunction at r-0. The latter is 

measured by the leptonic decay width of the state. 

It is particularly encouraging that in the specific examples of 

Sec. IV, the approximations are already excellent for N=4, which corresponds 

to four bound states in one dimension or two bound states in three dimensions. 

In the following paper we shall calculate the charmonium potential using 

the $ and $' masses and leptonic widths. There we explore in detail the 

ambiguities of the quarkonium problem and the additional experimental data 

needed to resolve them. 
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FIGURE CAPTIONS 

Fig. 1 The scattering of solitons appropriate to the reconstruction 

of a symmetric potential. The negative of the KdV field 

v,(x,t) is plotted for a better visual effect. The 

isolated disturbances for large values of ItI correspond 

to potential wells, each supporting a single bound state 

with energy-eigenvalues of the harmonic oscillator system. 

The symmetric disturbance at t:=O corresponds to the approxi- 

mate potential reconstructed from N bound states: (a) two 

bound-state case; (b) three bound-state case; (c) four 

bound-state case; (d) five bound-state case. 

Fig. 2 Effect of the choice of the parameter E. upon the N=4 

approximation to the harmonic oscillator potential. i 

(a) V4(x;EO=7) = V3(x;EO=7); (b) V4(x;EO=7.5); 

(c) V4(x;EO=8); (d) V4(x;EO=8.5); (e) V4(x;EO=9) = 

V5(x;EO=9). The exact potential V(x)=x2 is shown for 

Fig. 3: 

comparison. 

Approximate reconstruction of the harmonic oscillator 

potential (a) - (e): N=1,2,3,4,5 approximations to the 

potential. The true potential is shown for comparison; 

(f) - (j) : wavefunctions obtained in the N=1,2,3,4,5 

approximations; (k): Exact wavefunctions. 

Fig. 4: Approximate reconstruction of the linear potential. See 

the caption to Fig. 3. 

Fig. 5: Approximate reconstruction of the infinite square-well 

potential. See the caption to Fig. 3. 
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